MAK691E (14423) Mechanics of Turbulence Fall 2018/2019

Lecturer : Prof. Dr. Bedii Özdemir

Room : 227, Otomotive Building, 2nd Floor, ITU Ayazağa Campus Group : Fluids Group, Otomotive Building, ITU Ayazağa Campus

Phone : 212 285 3001 e-mail : bozdemir@itu.edu.tr

Ofice Hours : Thu: 13:30-17:00, Fri: 13:30-17:00

Lecture Hours: Fri: 8:30 am - 11:29 am (MOB 212)

Contents

Nature of Turbulent Motion, Dimensional Analysis and Length Scales, Vorticity Dynamics, Shear Flows, Statistical Description of Turbulence, Spectral Dynamics, Recent Developments in Turbulence Theory.

Reference Book

Pope, S 2000 Turbulent Flows, Cambridge Uni. Press.

References

- Tennekes and Lumley 1950 A First Course in Turbulence, Academic Press.
- Hinze, 1945 Turbulence, Academic Press.
- Batchelor, G 1952, Theory of Homogeneous Turbulence, Cambridge Uni. Press.
- Townsend, A. A. 1955 Structure of Turbulent Shear Flows, Cambridge Uni. Press.
- Monin and Yaglom 1971 Statistical Fluid Mechanics, Volumes I and II, MIT Press.
- Özdemir, İ. B. 1995 Turbulence Course Notes

Course Objectives

To introduce;

- onset and development of turbulent flows and their classifications,
- theory and basic concepts of turbulence, and methods of analyses of turbulent flows,
- description of well-established and known approaches and theories and their scope.

Course Outcomes

To develop skills;

- and basic knowledge to model turbulence physics,
- necessary to analyze turbulent flows and solve relevant problems,
- to design flow systems with turbulence.

Course Plan

Week	Topics		
1	Onset of turbulence, intermittency and transition.		
2	Definitions of turbulent parameters, Reynold's decomposition.		
3	Equations of turbulent motion and the closure problem; Homogeneous, isotropic turbulence; Concept of eddy.		
4	Dimensional analysis and length scales.		
5	Energy cascade; Reynolds number similarity and self-preservation.		
6	1st Midterm 26 October 2018		
7	Vorticity equation; Vortex stretching and tilting.		
8	Intermittency and entrainment; Free shear flows; Jets, mixing layers, and wakes.		
9	Wall-bounded shear flows, Boundary 1ayers and wall jets; Coherent structures in jets and boundary layers.		
10	Probability density and joint statistics; Spatially and temporally stationary flows and evolving flows.		
11	2nd Midterm 7 December 2018		
12	Ergodicity; Correlation functions; Central limit theorem.		
13	Fourier transform and aliasing in one-dimensional spectra.		
14	Spectrum of turbulence; Inertial subrange and Kolmogorov's -5/3 law; Some other spectrum functions.		
15	Summary of the semester		

Exams & Course Work

Midterms	2	40%
Homework Assignments	3	20%
Final Exam (or Term Project)	1	40%

 ${\bf Note: \it Please follow~www.akis.itu.edu.tr} \it for~any~announcement.$