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USE OF HYDRODYNAMIC STABILITY APPROACH FOR THE
CALCULATIONS OF INFLOW BOUNDARY CONDITIONS AND SPREAD
OF AN AXISYMMETRIC TURBULENT SWIRLING JET

SUMMARY

Turbulent swirling jets have been the subject of a significant amount of research due
to their importance and wide usage in many industrial engineering applications. It is
well known that such flows show strong unsteady characteristics and they are
dominated by large-scale structures, which influence the stability, endurance and noise
level of the applications adversely. To simulate and capture the space and time
dependent characteristics of turbulent jets, it is required to create an instantaneous
flow-field with a viable transient solution method.

Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are known to
be the prominent simulation models to resolve unsteady features of turbulent swirling
jets. However, there are several drawbacks associated with these numerical methods.
One of these is to specify proper turbulent inflow boundary conditions with appropriate
time and space correlations because the flow development downstream is highly
dependent on turbulent behavior upstream and at the inlet boundary. To create such
inflow conditions with appropriate space-time correlations, the hydrodynamic stability
approach excels as a feasible method, in which it is possible to find proper modes
related to the flow field under consideration and these modes can be used to create
time-dependent velocity profiles with correct cross-correlations.

The purpose of this study is to generate proper and sufficiently accurate inflow
boundary conditions for turbulent swirling jet simulations using the LES method with
the modes obtained from hydrodynamic stability approach. This goal is achieved in
two stages: In the first stage, the hydrodynamic stability of a circular pipe flow was
analyzed by deriving linearized equations of motion for fluctuation components, which
were solved by the parallel shooting method to obtain Fourier modes. In the second
stage, by using these modes, instantaneous velocity profiles with correct space-time
correlations were generated, which were then used as an inflow boundary condition in
several LES simulations of an incompressible, axisymmetric turbulent swirling air jet.
Finally, results were compared with the experimental data.

The results revealed that the simulations with proper turbulent conditions at the inflow
boundary, compared to the case without perturbations, provided better agreement with
measurements in terms of turbulent intensity.
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HIDRODINAMIK KARARLILIK ANALIZi iLE OLUSTURULAN GIRIS
KOSULLARI KULLANILARAK CALKANTILI SARMAL JET AKISI
BENZETIMIiNIN YAPILMASI

OZET

Sarmal c¢alkantili jetler, eksenel yondeki jet akiglara tegetsel hiz bilesenlerinin
eklenmesi ile olusur ve endiistriyel uygulamalarda sik¢a kullanilir. Ornegin, yanma
sistemlerinde hava ve yakitin tiirbiilansli karigimlarinin iyilestirilmesi, alevin kararli
hale getirilmesi ve sogutma uygulamalarinda zorlanmis taginim olarak kullanilan
calkantili jet dinamigi, miihendislik uygulamalarindaki 6nemli ve genis kullanim
sahas1 nedeniyle sayisal ve deneysel arastirmalarda 6nemli bir yere sahiptir. Daimi
olmayan akig Ozelliklerinin baskin oldugu calkantili jet akislarinda olusan zamana
bagli etkilesimlerin gerceklenebilmesi i¢in anlik akig alaninin zaman ve uzay
Olceklerinde yiiksek ¢oziiniirliikte hesaplanmasi 6nemli olmaktadir.

Turbdlansh akiglarin hesaplamalarinda kullanilan hesaplamali akiskanlar dinamigi
(HAD) yontemleri; Dogrudan Sayisal Benzetim (Direct Numerical Simulation — DNS)
ve Biiyiik Olgekli Yapilarm Benzetimi (Large Eddy Simulation — LES), ¢alkantil
jetlerdeki s6z konusu daimi olmayan niteliklerin benzetimi igin etkili yontemler olarak
one cikmaktadir. Hesaplama kabiliyetlerindeki artis ile birlikte, zamana bagl,
karmagik, tiirbiilansli akislarin incelenmesi konusunda LES yontemi son yillarda
oldukca yaygin bir yontemdir. Yurtdisinda bir¢ok kurulus, karsilastiklar1 problemlerin
benzetimini en gercekci sekilde yapabilmek amaciyla kendi kodlarini gelistirmistir.
Imperial College’da gelistirilen FLOWSI, Sandia Ulusal Laboratuvar’inda gelistirilen
RAPTOR, Stanford Universitesi'nden CDP ve OpenFOAM gibi bircok ornek
verilebilir. Bu kodlarda ikinci mertebe uzaysal ayriklastirma kullanilmaktadir.
Zamanda ikinci veya liglincii mertebeden integrasyon gergeklestirilmektedir. Ag alt1
Olgek modeli olarak da agirlikli olarak Smagorinsky/dinamik Smagorinksy modeli
kullanilmaktadir. Ancak bu yontemlerde karsilasilan genel problem, giris sinirinda
zaman ve konum bagmtilarim1 dogru tanimlayabilmektir. Akisin geldigi bdolge
yukarisindaki ge¢misinin, asagisindaki calkanti dinamigine dogrudan etki ettigi
bilindigine gore, bir ¢alkantili jet akis1 benzetimi goz onilinde bulunduruldugunda,
lileden ¢ikis Oncesi 6nem kazanmaktadir. Buradaki akis modlarmin uygun bir
yontemle bulunmasi ile istenen Ozelliklere sahip giris kosullar1 olusturulabilir. Bu
noktada, ¢apraz konum-zaman iligkilerini dogru verebilmesi nedeniyle hidrodinamik
kararlilik yaklagimi ve sonucunda elde edilebilecek akisin kendisine ait modlar, giris
kosulu olarak kullanilacak zamana bagli hiz profillerinin olusturulmasini miimkiin
kilmaktadir.

S6z konusu probleminin iistesinden gelebilmek igin gesitli yontemler uygulanmustir.
Hesaplama bolgesinin  siirlarint  yeterince uzaga c¢ekmek LES ve DNS
benzetimlerinde hesaplama maliyetini %50’lere varan oranlarda artirdig1 goriilmiistiir.
Giriste periyodik sinir sarti uygulamak her ne kadar ¢ok pratik ve kullanisli bir ¢oziim
gibi goziikse de eger ana akis dogrultusundaki degisimler yeterince kiigiik degilse bu
yontem uygulanabilirligini kaybetmektedir.
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Yapay c¢alkant1 olusturmak icin kullanilan bir baska yontem rasgele calkanti
eklenmesidir. Ancak elde edilen verinin enerjisi biitiin dalga boylarinda esit olarak
dagildigindan, diisiik dalga boyu bolgesinde gerekli olan enerji yaratilamamakta ve
verilen tedirginlikler kisa mesafede soniimlenmektedir. Tiirbiilansh akig giris sinir
kosullar1 iiretmek i¢in bir baska yontem olarak, tiirbiilansli ortalama akis alani
cevresindeki calkantilarin ¢esitli matematiksel modellere goére uygun bir yaklagimi ile
onceden tanimlanmistir. Bu yontem yapay tiirbiilans iiretimi olarak bilinir. Gergekei
tirbiilansh yapilar olusturmak icin Reynolds gerilmeleri, tiirbiilans kinetik enerjisi
spektrumu ve dogru faz iligkileri mevcut veriler olarak kullanilir. Ek olarak,
modelleme hatalarinin 6niine gegebilmek i¢in daha uzun hesaplama ag1 gereklidir.

Bu ¢alismada amag, LES yontemi uygulanarak yapilacak ¢alkantili sarmal jet akisi
benzetimlerinde kullanmak amaciyla, giris sinirinda akista olmasi istenen ¢alkanti
degerlerinin, hidrodinamik kararlilik yaklasimindan yaralanilarak yeterli dogruluk ile
verilebilmesidir. Bu ama¢ dogrultusunda, ¢alismanin ilk bolimiinde, tam gelismis,
calkantil1 bir akisin modlari, dairesel kesite sahip bir boru igerisinde hidrodinamik
kararlilik yaklagimi ile incelenmistir. Bu noktada ilk adim, dogrusallastirilmis akis
denklemlerinin, akis alani i¢inde gelistigi diisiiniilen kiiclik tedirginlikler i¢in ortaya
konulmasidir. S6z konusu tedirginliklerin gelisen dalgalar seklinde ¢oziimleri oldugu
varsayimi ve gerekli kabullerin yapilmasi ile bir 6zdeger problemi elde edilmistir.
Daha sonra, boyutsuzlastirilan denklemler indirgenerek, akis alanindaki tedirginlik
terimlerini modelleyen ve birinci derece dogrusal kismi diferansiyal denklemlerden
olusan bir denklem sistemi olusturulmustur. S6z konusu denklem sisteminin ¢oziimii
icin bir ortalama akis profili uygulanmis ve gerekli sinir kosullari belirlenmistir. Bir
sonraki asamada, Ozdeger problemi ilk olarak iki sinira sahip bir smir deger
problemine doniistiiriilmiis ve denklem sistemi ortonormalizasyon kosulu ile kapali
hale getirilmistir. Daha sonra ise s6z konusu kapali sistem, bir ilk deger problemine
dontistiirilerek her iki sinirda bilinmeyen degerlerin kestirimi, her iki sinirdan
baslayarak ortada secilen {igiincii noktaya dogru yapilan integrasyon ve burada
saglama gergeklesene kadar ¢ozlimiin yinelenmesi esasina dayanan paralel kestirim
yontemi kullanilarak sayisal ¢6ziim yapilmistir. Bu ¢6zlim sonucunda akis alanina ait
Fourier modlari elde edilmis ve yapilar1 irdelenmistir.

Calismanin ikinci boliimde, elde edilen Fourier modlar1 kullanilarak olusturulan
zamana bagl hiz sinyalleri, eksenel simetrik ve dairesel kesitli bir sarmal hava jetinin
LES benzetimlerinde radial, acisal ve eksenel hizlar igin giris kosulu olarak
kullanilmistir. Bu agsamada ilk olarak, jet icin ortalama akis parametreleri ile biiyiik ve
kugiik olgekli yapilarin tiirbiilans parametreleri hesaplanmigtir. Daha sonra, ANSY'S
ICEM CFD 18.0 yazilimindan yararlanilarak, en kii¢lik kafes biiylikliigli hesaplanan
mikro uzunluk 6l¢egine uygun olacak sekilde boyutlandirilan, altiyiizlii (hexahedral)
elemanlardan olusan, kesik koni bigiminde yapilandirilmis, 40 boru ¢ap1 uzunlugunda,
alt ve {ist tabani ise sirasiyla 10 ve 30 boru ¢ap1 genisliginde olan bir hesaplama ag1
olusturulmustur. S6z konusu hesaplama aginda hava akisi, alt tabanin merkezinde
bulunun giris yiizeyinden baglayarak 1 boru ¢apir uzunlugundaki kisa bir borudan
gecmekte ve boru cikisinda bir jet olusturmaktadir. S6z konusu hesaplama agi
kullanilarak, giris sinirinda ortalama hiz profili, ¢ikis siir kosulu olarak ise kesik
koninin her bir ylzeyinde atmosferik basing ve taginim sinir kosullarmin uygulandigi
bir LES benzetimi yapilmistir. Bu benzetimde giris yiizeyinde baskaca bir ¢alkanti
yapist uygulanmamistir. Daha sonra, ayni hesaplama ag1 ve c¢ikis sinir kosullari
kullanilarak, bu kez giriste calkant1 yapis1 olarak, elde edilen zamana bagl ¢alkanti
sinyallerinin deneysel veriye uygun calkant1 yogunlugu ile uygulandigi bir LES
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benzetimi yapilmistir. Bu benzetimde, Fourier modlart iistiiste toplanarak radial, acisal
ve cksenel hizlar icin zamana bagli giris verileri olusturulmus, radyal yondeki hiz
verisi girig smirinda dogruca uygulanirken, agisal ve eksenel yondeki hiz verileri
uygulanmadan Once ortalama akis profili ile {ist iiste bindirilmistir. Tiim LES
benzetimlerde icin ANSYS FLUENT 18.0 yazilimindan yararlanilmig, mikro 6lgekli
yapilarin modellenmesi ic¢in dinamik Smogarinsky modeli kullanilmistir. Tim
benzetimlerin baslangicinda, giris yiizeyindeki ortalama hiz profili, boru boyunca
gerceklesen sinir tabaka gelisimi nedeniyle duvar yakininda diizenlenerek, jetin
c¢ikisinda deneysel veriye uygun ortalama akis profili elde edilmesi saglanmistir. Yine
tiim benzetimlerde zaman adimi, akigin mikro zaman Glgegine uygun sekilde sec¢ilmis
ve sabit olarak alimmustir. Benzetimler, akisin istatistiksel olarak kararli duruma
ulasabilmesi i¢in ilk olarak 4000 zaman adim1 kosulmus, daha sonra zaman ortalama
degerleri elde edebilmek amaciyla 6rnekleme islemi 5000 zaman adima siiresi boyunca
yapilmistir.

Calismanin son boliimiinde, iki LES benzetiminin sonuglart deneysel veriler ile
karsilastirilmistir. Eksenel yondeki ortalama akis g6z o6niinde bulunduruldugunda, dort
benzetimin de birbirine benzer ve deneysel veriye kismen yakin sonuglar verdigi
goriilmistiir. Her iki benzetim icin gecerli olacak sekilde, tiim eksenel yondeki
konumlarda, deneysel jetin daha yuksek yayilim gosterdigi ve giris kosulu olarak
verilen radyal yondeki hiz sinyalinin jet yayilimina gozle goriiliir bir etkisi olmadigi
saptanmistir. Jetin merkez ¢izgisi iizerinde ise, tiim benzetimler ve Ol¢iim degerleri
arasinda yeterli uygunluk goézlemlenmistir. Sonuglar ¢alkanti yogunlugu agisindan
irdelendiginde, genel olarak calkantili giris kosulu uygulanan benzetimlerin, sadece
ortalama akis profili uygulanan benzetime gore 6l¢iim degerlerine ¢cok daha yakin
veriler sagladigi saptanmustir. S6z konusu ¢alkantili giris kosulu uygulanan
benzetimler kendi aralarinda karsilastirildiginda ise, giriste verilen hiz verisi nedeniyle
olusan yiiksek tiirbiilans yogunlugunun, jet ¢ikisinin yakiinda sonumlendigi
gozlemlenmis, girig sinirinda 15% tiirbiilans yogunlugu uygulanan benzetimin genel
olarak diger benzetimle oranla daha iyi sonuglara sahip oldugu goriilmiistiir. Son
olarak, bu calismada kullanilan yontemin dogrusal olmayan terimleri goz ardi
etmeden, daha gercekei sonuglar verebilecek sekilde gelistirebilecegi anlagiimustir.
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1. INTRODUCTION

1.1 Purpose and Relevance

Turbulent swirling jet flows are of considerable practical importance in many
industrial applications, for instance, in aeronautics, combustion, heating and cooling,
mixing enhancement and noise suppression (Yang et al., 2016). During the last two
decades, the advancements in computer technologies made simulations of complex
turbulent flows affordable even with a moderate computing power, which also made
computational Fluid Mechanics (CFD) a feasible alternative to expensive experiments.
Direct Numerical Simulation (DNS) is capable of resolving the whole length scales of
a given flow, which makes it the most accurate but computationally expensive method:
The required for mesh resolution sharply increases with the flow Reynolds number
and, therefore, the DNS computations are now feasible only at low Reynolds numbers
and simple geometries. In high Reynolds number flows, Reynolds-Averaged Navier-
Stokes (RANS) approach has been very common. Although the RANS is one of the
cheapest and oldest approaches in turbulence modelling, it is incapable of simulating

complex turbulent flows with sufficient accuracy.

An alternative approach between DNS and RANS is Large Eddy Simulation (LES), in
which large-scale structures are fully resolved while the small sub-grid scales are
modelled. LES also offers a good compromise between the high cost of the DNS and
poor accuracy of RANS. Hence, it has become very popular in studying time-varying
complex turbulent flows. These flows are, however, highly dependent on physically
realistic boundary conditions, in that particularly the inflow boundary is of utmost
importance. If the inflow conditions are inconsistent and are not well prescribed in
time, LES computations present a significant decay of fluctuations further down in the
flow. Hence, the accuracy of the entire LES simulation of turbulent flows is highly

dependent on the proper definition of the inflow including instantaneous fluctuations.

It is evident that the downstream flow dynamics are directly related to the turbulent

fluctuations existed at the inflow boundary, it is essential to define correct upstream



modes for the proper evolution of turbulent flow in the region where large eddies are
resolved (Schlicting, 1979). Therefore, if we want to make LES of the swirling
turbulent jets and resolve fluctuations, it is then vital to generate the proper turbulent
inflow conditions with appropriate time and space correlations. In this regard, the
nozzle flow upstream of the jet exit becomes significant. According to Rosenhead
(1963), it is viable to simplify the nozzle geometry into a basic pipe structure and to
scale the downstream jet flow with the turbulent structures in pipe flow. Thus, by
determining the modes of the flow inside the pipe, one can generate the necessary
inflow fluctuations to obtain desired turbulent flow characteristics of the swirling

turbulent jets further downstream.

The hydrodynamic stability concept is usually exploited to determine the onset of
instability and transition to turbulence in fluid flows. The simplest approach to
describe the stability conditions in a flow is the use of linear stability analysis, in which
the equations of motions and boundary conditions are linearized for sufficiently small
disturbances in the flow field. The idea here is to resolve the small perturbations into
separate Fourier modes and find necessary eigenvalues of the linear equation system
to identify the stability conditions of corresponding disturbances (Drazin and Reid,
2004). Moreover, by solving the equations numerically with a suitable method, and
finding normal modes of the system, it is mathematically possible to superpose the
modes together to generate the related time-dependent disturbance with the correct

space-time correlations.

The purpose of this study is to generate proper and sufficiently accurate inflow
boundary conditions using hydrodynamic stability approach and to perform LES of a
swirling turbulent jet. The goal is achieved in two stages: In the first stage, the stability
of the flow in a circular pipe (representing the nozzle) was analyzed by linearized
equations of motion, which were then solved with a method (parallel shooting) to
obtain Fourier modes representing the fluctuations. In the second stage, by using these
modes, the instantaneous velocity profile with correct space-time correlations were
obtained, which was then applied as an inflow boundary condition in several LES
simulations of an incompressible, axisymmetric turbulent swirling jet. Finally, the
results were discussed in comparison with the experimental data (Orli and Alfredsson,
2008).



1.2 Literature Review

To overcome the difficulties associated with defining proper inflow boundary
conditions, various methods have been developed (Dhamankar et al., 2018). The use
of periodic boundary conditions appears as one of these methods, where the data from
flow downstream can be feedback at the inlet and so the flow pattern repeats itself
periodically (Spalart, 1988). This kind of boundary condition is often used for fully
developed time-evolving flows, which are homogeneous in the axial direction. In such
flows, there is an equilibrium between mean flow and time-dependent fluctuations,
and this satisfies the momentum equations (Lund et al, 1988). However, this approach
loses its feasibility for flows where the mean variation downstream is not small enough
in comparison with the variation in the transverse direction (Moin and Mahesh, 1998).
Therefore, the use of the periodic boundary is not suitable for flows, which evolve
spatially like turbulent boundary layers and jets. The simulation of spatially developing
turbulent flows is, however, possible with a more common and direct method in which
the computation is initiated with a laminar profile in an upstream region sufficiently
far so that the transition to turbulence downstream occurs naturally (Dhamankar et al.,
2018). Even though this approach is advantageous since using turbulent fluctuations
at the inlet is unnecessary, it is not a computationally efficient procedure due the

requirement of long development section (Sagaut, 2002).

Another method to produce turbulent inflow boundary conditions is known as the
synthetic turbulence generation. Superimposing random fluctuations on a mean
turbulent velocity profile is the simplest of these approaches to define turbulent inflow
conditions, in which by adjusting the fluctuation amplitudes, it is possible to obtain
desired second-order flow characteristics (Moin and Mahesh, 1998). However,
randomly generated fluctuations lack proper phase relations (Keating et al, 2004)
without which, it is not possible to sustain high order correlations and create a realistic
turbulent flow structure (Lund et al, 1988). In addition, when the energy distribution
of random signals is uniform over the entire wavenumber range, the energy of low
wavenumber range mostly remains below the required level. As a result, the random
fluctuations applied at inflow boundary are damped in a short distance downstream
and eventually exhibit laminar inflow characteristics (Klein et al, 2003). It is also
possible that fluctuations around a turbulent mean profile are predefined with an

appropriate method based on various mathematical models. However, these models in



general, require Reynolds stresses, the spectrum of turbulent kinetic energy and correct
phase relations as preexisting data to create realistic turbulent structures (Dhamankar,
2015). Additionally, longer computational domains are also necessary, so that the

turbulent flow can recover from modelling errors (Tabor and Baba-Ahmadi, 2010).

One of the procedures to develop turbulent conditions at the inflow boundary is to run
a synchronized second simulation. Hence, at each time step, one can extract a planar
flow field information at a specific location downstream to be used as an inflow
condition in the main simulation. Even though running two simultaneous simulations
seems to be computationally expensive, it is an effective method and offers a
conceivable variety of approximations and modifications, which can be made in the

auxiliary simulation to obtain desired flow properties (Otero, 2009).

1.3 Stability of Swirling Jet Flows

There has been a vast amount of the numerical and experimental studies devoted to
the swirling jet flow configuration because it has been one of the most important
complex fluid problems. Swirling jets ubiquitous in numerous natural phenomena and
engineering applications. For instance, swirling flows are encountered in
meteorological events such as tornadoes and dust devils (Wu et al., 2015). As well as
in technical applications like wingtip vortices behind aircraft wings (Morse, 1980). In
advanced combustion systems, specifically in diesel engines, the swirl in the spray jets
enhances mixing characteristics, leading to flame stabilization and improvement in the
combustion efficiency. They are also widely used in cyclone separators or heat
exchangers due to their unique characteristics (Vaidya et al., 2011). Since the first
discovery of the coherent structures in jet flows by Crow and champagne (1971)
swirling flows due to their complex flow dynamics such as vortex breakdown,
Precessing Vortex Core (PVC) and helical flow instabilities (Oberleithner, 2012;
Mishra, 2018; Muiiller et al., 2020)) draw a significant attention and become a
benchmark for instability researches in the past decades (Syred, 2006; Lu et al., 2005;
Villalba, 2004).

The hydrodynamic stability concept is usually exploited to determine the onset of
instability and transition to turbulence in fluid flows. The simplest approach to
describe the stability conditions in a flow is the use of linear stability analysis, in which

the equations of motions and boundary conditions are linearized for sufficiently small



disturbances in the flow field. The linear stability theory is one of the intriguing
subjects of fluid mechanics which has been of growing interest for over a hundred
years. The problem of jet instability was first studied theoretically by Lord Rayleigh
back in 1879 where he analyzed and formulized the instability of inviscid circular jet
for axisymmetric perturbation and paved the way to the extensive studies of the
stability of the jets flows. (Rayleigh, 1879).

In the mid 20" century, rapid advancement in the aviation industry and the introduction
of turbojet engines spurred numerous researches on the hydrodynamic stability of
turbulent jet flows. (Lessen, 1975; Michalke, 1985). Batchelor and Gill (1962) for the
first time conducted the mathematical linear stability analysis of steady axisymmetric
parallel jet flows, they found that all axisymmetric and non-axisymmetric modes are
unstable for top-hat jet profiles (Lessen 1975, Batchelor and Gill 1962). An earlier
investigation of linear stability analysis was mostly based on the temporal evolution
of disturbances (Wu and Farokhi, 1991; Qadri, 2013). In temporal stability analysis,
the wavenumber is taken as real and dispersion relation from linear theory is solved
for unknown complex frequency. (Huerre and Monkewitz, 1990). This type of stability
is mostly used in bounded flows like Taylor-Couette flow (Huerre and Monkewitz,
1985; Paschereit et al., 2014). On the other hand, for the unbounded shear flows like
jets and wakes, the spatially growing disturbances results in much more consistent with
experimental outcomes than temporal stability theory. (Michalke, 1965; Garg and
Rouleau, 1972; Huerre and Monkewitz, 1985). In spatial linear stability theory, the
frequency is constrained to be a real number, and the eigenvalue problem sought for
complex wavenumber (Paschereit et al.,, 2014; Michalke, 1965). The third
methodology, in which disturbances may grow in both time and space is referred to
linear Spatio-temporal stability analyses. In the context of this approach, the linear
stability analysis bifurcates into the absolute and convective instability (Huerre and
Monkewitz, 1990; Balestra, 2013; Loiseau, 2015). In the flow region if the linear
response to a certain perturbation spreads upstream and downstream and ultimately
contaminating the whole domain is considered to be locally absolute unstable. In
contrast, if the perturbation is swept downstream away from the source, the flow is
regarded as convectively unstable, such flows behave as noise amplifiers (Huerre and
Monkewitz, 1990; Paschereit et al., 2014; Loiseau, 2015). Thus, in Spatio-temporal

stability analyses both angular frequency and wavenumber is taken as complex



numbers. This type of stability analyses is mostly applicable to open shear flows such
as hot jets, wakes and strong swirling jets (Monkewitz and Sohn, 1988, Paschereit et
al., 2014)



2. HYDRODYNAMIC STABILITY ANALYSIS OF SWIRLING PIPE FLOW

The present investigation focuses on the solution of the equations of motion of a
swirling jet flow emanating from a fully developed axially rotating pipe. This means
that the history of the swirling jet perturbations is rooted in the pipe flow. In the
following, the equations of motion for a cylindrical pipe flow system will be linearized
and decomposed into normal modes with the corresponding eigenfunctions and the
assumptions made will be elaborated. Then, in order to close the system of equations,
the physical and numerical boundary conditions of this system will be defined. The

numerical method used for the solution is explained in the next section.

2.1 Reynolds Decomposition and Linearization of the Navier-Stokes Equations

The equations of motion for a fully developed axially rotating pipe flow is based on
the incompressible axisymmetric flow assumption and written for a cylindrical inertial

frame of reference as,
Continuity equation:
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Using Reynolds double decomposition formalism (Tennekes & Lumley, 1972), the
instantaneous flow field can be considered as the summation of time-averaged
quantities and their fluctuation components. Then, it is possible to express velocity

components and pressure as,

U,(rs ¢, 2,0) = U,(ry ¢, 2,0 + 1, (s 6, 2, 1) (2.2a)
Uy(r, ¢, 2,0) = Uy(r, ., 2, 0) + uy(r, 4, 2, 1) (2.2b)
U.(r, 6, 2,0) = U.(r, §, 2, 1) + u(r, , 2, £) (2.2¢)
P(r,¢,2,0) = P(r,$,2,0) + p'(r, 6, 2, 1) (2.2d)

where the terms with over-bar and primes denote mean and fluctuation parts,
respectively. Applying the expansions 2.2a-d into the equations 2.1a-d leads to the

following equations,
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Applying the averaging operator on the equations 2.3a-d over a sufficiently long period

T, the governing equations for the flow become time-independent and following

Reynolds-averaged continuity and Navier-Stokes equations (RANS) are obtained,



Continuity:
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Extracting RANS equations 2.4a-d from equations 2.3a-d, yields the following

equations, which are representing the motion of the fluctuation components.
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Furthermore, by assuming:

e Quadratic and higher order perturbation terms are sufficiently small to be
neglected.

e Mean radial velocity is zero.

U, =0 (2.6a)
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e The mean flow is axisymmetric so that the partial derivatives of the mean velocities

in the ¢ direction are equal to zero.

o(U)
W =0 (2.6b)

e The mean flow in the pipe is fully developed in z direction, so that the partial

derivatives of mean velocities in axial direction are equal to zero.
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2.2 Normal Mode Expansion and Modal Equations

In order to define the perturbations in any flow field precisely, a complete set of wave
spectra is required (Boiko et al, 2002). The completeness of the problem requires self-
adjointness of the equation system (Weigand, 2015). The dynamic modes developing
in bounded domains, like in pipe flows, are generally continuous modes and they can
represent the turbulent structures in the flow field (Ozdemir, 1996). The next step is to

define these fluctuations in normal modes as,

12



u, = A, (Nexp{ilh,r + kyd + k.z — w)}+ (%) (2.8a)

u¢ = A¢(r)exp{i(krr + ks + k.z — wt)} + (%) (2.8b)
u, = Az(r)exp{i(krr + kyp + k.z — a)t)} + (%) (2.8¢)
p = Ap(r)exp{i(krr + kyp + k.z — w)}+ (%) (2.8d)

where (x) denotes complex conjugate terms. 4,, 44, 4. and 4, are the complex
eigenfunctions; w, k. and k, are the real eigenvalues denoting frequency and

wavenumbers in the » and ¢ directions, respectively. Assuming that the modes are
growing or decaying spatially only in the axial direction, the relevant eigenvalue &, =
k., + ik,; needs to be a complex variable (k.. and k,; are the real and imaginary parts

of k,, respectively) denoting the wavenumber in the z direction.

Applying the normal modes in 2.8a-d into equations 2.7a-d, yields
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The equation system in 2.9a-d forms an eigenvalue problem, which needs to be

nondimensionalized, which is done next.

2.3 Nondimensionalization

In order to nondimensionalize the equations 2.9a-d, the bulk velocity in axial direction,

Uy i @nd the pipe radius, ry = D, /2, are used as characteristic flow parameters.

The dimensionless new variables can be defined as follows,

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

(2.10f)

(2.100)
(2.10h)
(2.10i)
(2.10j)
(2.10K)

(2.101)

(2.10m)

Where v, p and Re denote kinematic viscosity, density and Reynolds number in terms

of radius, respectively. The dimensionless derivative operators can be defined

accordingly.
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In order to build a linear first-order partial differential equation system that can be

solved numerically, the second order partial derivatives in equations 2.12a-d need to

be replaced with a mathematical manipulation as,
(2.13)
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By defining a new variable Yy,
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One can have
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ar art
In the same way,
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and the resulting second-order derivative becomes
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Substituting 2.15 and 2.17 into equation 2.14a reads,
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Rearranging the equation 2.12b and substituting 2.14b into it, yields
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By rearranging the equation 2.12c for the dY/dr" term,
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And, by rearranging the equation 2.12d and taking out the dY,/dr" term,

W Re. |—ioy +U; Yy + ik UTY +YdUZ*+1'k*Y
= Re HONS & rl¢3 i, Uz I3 ldl"* 2124

dr* 0

%2

s *2 1 L% k¢ %2
—(2ik. Y, —k Vi + = (Y +ikYs) ——S5Ys—k Y3
r I”*

(2.21)

is obtained. Finally, 2.13, 2.15, 2.17, 2.19, 2.20 and 2.21 constitute the model

equations for the dynamic perturbations in the flow field as,
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which represent the eigenvalue problem defined by the eigenvectors o, &, k,,f and

*

k"

2.4 Mean Velocity Profile and the Boundary Conditions

The dynamic perturbation equations consist of terms with the axial and azimuthal
mean velocities, which need to be defined explicitly. The normalized velocity profiles

(shown in Figure 2.1) at the pipe exit (x/D, = 0) of the experimental study (Orli and

Alfredsson, 2008) were used as the mean axial and azimuthal velocities (U, and U¢*)

in the present simulations. The data correspond to a bulk dimensional axial velocity of
Uk = 6 m/s and to a Reynolds number of Re =24000. When necessary, a cubic

interpolation (Press et al, 1992) was used in between the measured points.

1.5 T T T T 1 . T I
05F =, .
1 F - . -
UZ L] U¢* ok l.._... _
05 f - 1
. -0.5 | A
0k L ] L 1 - -1 1 1 L
0 0.5 1 1.5 2 2.5 -0.5 0 0.5
r/ry r/ro

Figure 2.1 : Normalized jet exit velocity profiles at z/D, = 0.0 a) Axial b) Azimuthal
(Orlii and Alfredsson, 2008).
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The swirl number is formulized by,

R
puwr*dr
S= /OR— (2.23)
Rfo pulrdr
Which is the ratio of axial flux of angular momentum and the axial momentum, times
the equivalent pipe radius (Gupta et al., 1984).The swirling jet of mentioned
experiments, therefore, has a swirling number of the S = 0.5 (Orlii and Alfredsson,

2008).

The impermeable and no-slip boundary condition is imposed for velocity fluctuation

components at the wall, that is,

n(r*, 251 =0 (2.24a)
(' z5t) =0 (2.24b)
Y3(r" 25 1) =0 (2.24c)

However, due to the coordinate singularity at the centerline (+* = 0), certain regularity
and analytical constraints are required for the solution of the equation system to remain
bounded (Meseguer and Trefethen, 2000). According to Batchelor and Gill (1962) and

Faisst (2003), for non-helical (k;, = 0) perturbations these constraints are,

11(0,z%,¢) =0 (2.25a)
dy,

2(0,2%,0)=0 (2.25b)
dar*

Y,(0,z5,¢) =0 (2.25¢)

and for helical perturbation, i.e., k; = 1, constraints are,

Y3(0,z%,¢) =0 (2.25d)
Y1(0,z%, 1) = —iY,5(0,27, ¢) (2.25¢)
74(0,z5,¢) =0 (2.25f)

Additionally, due to the radial symmetry,

du.”
dar®

(0.2%,1) =0 (2.250)

It is known that in fully turbulent wall-bounded shear flows, the viscous shear stresses

are very small compared to the turbulent stresses particularly in the outer region of
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the boundary layer and can be neglected (Toonder & Nieuwstadt 1997; Wu & Moin,
2008). Based on this, it can be said that viscous terms at the right-hand side (RHS) of
the equations 2.12b-d can be neglected near centerline region, which also agrees with
the fact these terms are divided by the Reynolds number and happen to be roughly 5
orders of magnitude smaller than the rest. The Polar coordinate singularity at the
centerline (»* = 0) is treated by the strategy developed by Mohseni and Colonius
(2000), where the first discretization point is staggered by Ar/2; In our study we locate
the grid point further close to the pole by shifting the radial coordinate by 0.15 x Ar/2.
This method is widely used in previous studies regarding cylindrical coordinate
singularities due to its simplicity and accurate results. (Bogey, Marsden, & Bailly,
2011; Skene and Schmid, 2019).

2.5 Numerical Solution Process

The first order ordinary differential equations 2.22a-e represent the eigenvalue
problem defined by the eigenvectors w”, ", k,~ and k.. In order to solve the problem,

given the values of o™, kr* and k¢* the corresponding values of kz"= and eigenfunctions

(shape functions) will be sought (Ozdemir, 1991). In order to reduce the eigenvalue
problem into a boundary value problem, a new variable is defined (Ozdemir, 1991).

Ys=k, (2.26)
Since the eigenvalue kz* is constant throughout the solution space,

dvs
ar*

0 (2.27)

The new system extended by adding 2.27 to the equation set necessitates one more
boundary condition to make the system closed. The orthonormalization condition of

eigenfunctions is used for this purpose,

*

f YT () Y()dr = C (2.28)
0

where the constant C might arbitrarily have any value. Furthermore, by using 2.28,

another new variable is defined as (Keller, 1976),
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*

Ys(r') = f YT () ¥ () (2.29)
0

=Y () (230)

Or it can be explicitly expressed as

dY,
drfzY12+Y22+Y32+Y42+Y52+Y62+Y72 (231)

The equation 2.29 brings two new boundary conditions and transforms the system into

a closed-form and can be expressed as,

Y3(0) =0 (2.32a)
Ys(1)=C (2.32b)

In the present work, C value is defined according to the prescribed value of the
turbulent intensity at the pipe exit, which will be described in section 5.3.

2.6 Parallel Shooting Method

The boundary value problem described by the equations 2.22a-e and the boundary
conditions 2.24a-c, 2.25a-g and 2.32a-b can be solved like an initial value problem
using the shooting method. In that, the missing boundary values at both inner (r=0)
and outer (r=ry) boundaries are specified freely so that the system can be integrated
from one to the other boundary (Press et al, 1992). The freely specified values are
corrected iteratively by using the multidimensional Newton-Raphson method until the
integration fulfills the actual conditions at the opposite boundary. However, using the
standard shooting method in wide domains leads to undesired numerical errors
(Olendraru et al., 1999; Wang et al., 2016). To prevent such errors, the domain is split
into two parts, in which the integration is performed from each boundary to an arbitrary
fitting point near the middle, where the solutions from both sides are desired to be
close as possible within a very small margin of error. This approach is called parallel
shooting method and it is faster and more reliable compared to the standard shooting

method.

Due to the complex eigenfunctions, the equation system requires 16 real conditions at

two boundaries. Eight of these boundary conditions are prescribed by the flow
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dynamics and numerical procedure, while the rest of them should be guessed initially.
In this regard, a vector ¥ with the components of initially guessed values is formed so
that all the necessary boundary conditions of the system are specified. As the
integration proceeds from inner and outer boundaries to the fitting point with fourth
order Runge-Kutta method, the solutions are checked after each integration step with

a discrepancy vector E,
E =Y, 0% Vi, V) = Y05 Vier o )| 1<i<8 (2.33)

At this point, the purpose is to find a vector value of V for that the vector value of E is
zero (Press et al, 1992). Using the multidimensional Newton-Raphson method, the

equation set is solved,
J(8x8) ) 5V =—-F (234)

and the correction vector oV from 2.34 is added back to ¥ to generate a new prediction

vector,
Vnew = Vold + 14 (235)
The Jacobien matrix in 2.34 has the components given by the evaluation

_OE; E(Vi ., V,+ AV, w )= E(Vy e, Vi, )

= —— 2.36

The iterations in this study were repeated until the discrepancy vector E reaches a

margin of 10'*, while the calculations were done on a 64-bit processor with all

numerical values defined in double-precision format.
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3. RESULTS OF HYDRODYNAMIC STABILITY ANALYSIS

The numerical solution method described in the previous chapter was used for the
calculations in a circular pipe flow. The calculations were made at the exit of a pipe of
length 27y, which corresponded to a wave growth over a z distance of 2r,. The
computational domain defined for the stability analysis is shown in Figure 3.1, which

was discretized in the radial direction at 201 computation points.

|<_\ ¢
r Wall

S —

\/ View A-A

Figure 3.1 : Computational domain for mode calculation.
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The initial guess values at the start of the computation are given in Table 3.1.

Table 3.1 : Initial guess values at boundaries.

Boundary| Variable \Y AV
Re(Ye) -4.606728474739236 - 10T | 4.606728543384840 - 107
Im(Ys) -1.533805845315795 - 10 |1.533805868171283 - 1073
Re(Y-) -1.944235913640080 - 108 |1.944235942611453 - 10°°
= Im(Y) 4.0895872302174190 - 10° |4.089587291157017 - 10710
= Re(Y.) 2.336262838489050 - 107" | 2.336262873302079 - 108
Im(Y.) -5.717627379947398 - 10° |5.717627465146685 - 101
Re(Ys) 2.565199944935720 - 10° | 2.565199887599033 - 10
Im(Ys) 7.738414932520961 - 102 | 7.738414759553908 - 10*
Re(Y.) 2.971826961290401 - 10* |2.971827005574073 - 10
Im(Y,) -4,075944535036068 - 10° | 4.075944595772375 - 10°°
° Re(Y,) 6.988301031184836 - 10* |6.988301135318636 - 10
% Im(Y>) -2.483215984593990 - 10° |2.483216021596792 - 10”/
% Re(Y,) -1.987592540730970 - 10° |1.987592570348407 - 107"
© Im(Ys) 1.845545041503233 - 107 | 1.845545069003997 - 108
Re(Ys) 2.565199944935720 - 10° | 2.565199887599033 - 10
Im(Ys) |7.738414932520961 - 102 |7.738414759553908 - 10*

The variations of kzr* with normalized frequency (™) are illustrated in Figure 3.2 for
axisymmetric and non-axisymmetric perturbations. It appears that ., remains positive
and exhibits a linear behavior with approximately constant slope for all values of ...
The axial wavenumber &~ of disturbances remains almost independent of the k.
values. Thus, for clarity, the graphs are shown for the radial wavenumber of k. = 0.
we can define a phase velocity, v, for the modes travelling downstream as (Wu et

al., 1992)

(0]

1% =—
phase

kzr

(3.1)

which takes a value of v,,,, = 0.85 m/s for k, = 0 and 1.14 m/s for k, = 1. These

phase velocities are in agreement with the studies for both temporally (Lessen et al.,
1974) and spatially (Garg and Rouleau, 1972; Lessen and Singh, 1973; Abid et al.,

1993) evolving waves.
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Figure 3.2 : Variation of real part of normalized wavenumber k., with
normalized frequency w”, @) k; = 0, b) ks = 1

The imaginary part, k;, for k; = 0 is presented in Figure 3.3, where it remains always
positive over the entire spectrum, which indicates a negative growth rate expressed as
e~*. Since all Fourier modes decay downstream in the flow, the pipe flow can be said
to be spatially stable with respect to the axisymmetric (k; = 0) disturbances.
Reminding the current swirl ratio, S = 0.5, these results are actually in agreement with
the findings of Howard and Gupta (Howard and Gupta, 1962) and Leibovich
(Leibovich, 1984), who showed that swirling pipe flows are stable for swirl ratios
higher than the critical value of 0.403. Indeed, it is known that the swirling pipe flows
are generally stable to axisymmetric perturbations in a wide range of Reynolds
numbers and swirl ratios. Furthermore, the temporal ( Pedley, 1969; Lessen and Singh,
1973) and spatial (Garg and Rouleau, 1972; Fernandez-Feria and del Pino, 2002)
stability studies both conclude that such flows are generally stable to axisymmetric
(ks = 0) perturbations. In Figure 3.3, one should also point out that the k.; values have
different discrete levels (rising from 1 to 4), in each of which changes occur in a
continuous manner. The k_; values in level 1 first increases from 0.0452 to 0.0965 in
the range 0 < w < 0.22 and, then, decreases to a value of 0.0958 towards » = 0.35.
Afterwards, it jumps to 0.1405 in level 2, where the rate of wave attenuation decreases
continuously to 0.1375. The second jump occurs to 0.444 in level 3, where the decay
exponent continuously increases to 0.4463. Finally, the third jJump takes the decay rate
from 0.495 to 0.514.
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The rates of change of modes for the case k, = 1 are presented in Figure 3.4. Here
again, all modes decay and the pipe flow seems to be spatially stable in response to the
non-axisymmetric (k, = 1) disturbances. This is in agreement with the studies on
temporal modes in the range of high Reynolds numbers (Lessen et al., 1968;
Vanderborck and Platten, 1978) (including the Re of the current flow) and on the
spatial instability of turbulent pipe flows (Garg and Rouleau, 1972), where no
instability was found in non-axisymmetric perturbation of k; = 1. In addition, the
investigation of the vortex instabilities and the onset of breakdown leads to a new
definition of instability based on critical swirl threshold, which was first proposed by
Wang and Rusak (Wang and Rusak, 1996) for solid body rotations in pipe flows. The
extension of their work on non-axisymmetric perturbations (Wang et al., 2016) shows
that the flow remains asymptotically stable when its swirl ratio is less than the critical
value of 1.613, which perfectly concurs with the findings of the present work, where
the swirl level was less than this critical value. Furthermore, the experimental results
of Orli & Alfredsson (Orlii and Alfredsson, 2008) indicate that there is no vortex
breakdown phenomenon undergoing in their benchmark pipe flows, which
substantiates the results of our stability analyses. Fig. 5 also shows that three different
discrete levels in the form of a backward step are observed in contrary to the case k;, =
0. The detailed changes in each of these sections are provided in subfigures Level 1 to
Level 3: In the first level, the decay rate changes in a parabolic manner. In the two
subsequent levels, it first increases with a curve concaving up between 0.7 < w < 1.4

and, then, with a curve concaving down between 1.4 < w < 1.9.

The mode shapes corresponding to the eigenspectra discussed previously are presented
in Figure 3.5 for radial wavenumber &, = 0 and in Figure 3.6 for k. = 1.1t is clear in
all sub-graphs in Figure 3.5 that the amplitude of the eigen (shape) function
modulations increases with the frequency. The envelope function of the amplitude
modulations, which gives us an idea about the spatial distributions of the relevant rms
fluctuations, behaves more like a skewed Gaussian distribution with a tail extending
towards the centerline. It makes a peak at around /7, = 0.58 and it is interesting that
this point is not close to the centerline but on the wall side of the flow passage, in a
region typically described as the outer region of a turbulent boundary layer. Almost
exactly the same behavior is observed for k£, = 1 (Figure 3.6) except for the location

of the envelope peak, which is shifted towards the wall and occurs r/r, = 0.62.
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It should also be noted that in both Figure 3.5 and Figure 3.6, the order of magnitude
of amplitudes seems very different for different model shapes, u,., u¢ and u_, in that u¢

and u, are at the same order of magnitude whereas u, is 2 orders of magnitude smaller.

Figure 3.7 shows that unlike the mode shapes for u, and u¢ the mode shapes for u., are
not zero at the centerline »/r, = 0. This is a manifestation of the boundary conditions
imposed ., where it is bounded on the wall and is free at the centerline (Garg and
Rouleau, 1972; Faisst, 2003). However, as the frequency increases, the nonzero values
at /ry = 0 decreases substantially. From the previous studies on turbulent rotating
pipe flows such as the experimental investigation of pipe flows conducted by Imao et
al. (1996) and lately, DNS of pipe flows reported in Wu and Moin (2008), The
Reynolds and viscous shear stresses have both peak values near the wall where
Reynolds stress goes to zero in the vicinity of the wall while viscous shear stress gets
the highest value. These results support the previous radial distribution of turbulent
intensities graphs (Figure 3.7) from the linear instability analysis, where it is not taking
into account the Reynolds stresses which results in the shifted peaks toward the

centerline of the pipe.

29



Envelope

0.6 0.8 1 0 02 04 06 08 1 0O 02 04 06 08 1
r/ry /1 r/ry
a)=
__________ o =
.......... w =10
................... w=15
i, w =20
k.=0

Figure 3.5 : Mode shapes for &, = 0 at different frequencies, Left, radial component,
Y, = u,. Center, tangential component Y, = u¢ Right, axial component Y; = u,.
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Figure 3.8 presents the rms fluctuation profiles of u,., u¢ and . which were calculated

from the modal shapes. The rms profiles of the radial () and axial velocity
fluctuations () exhibit a peak value at around »/r, = 0.58, whereas the helical
velocity fluctuation rms (u;) reaches its maximum roughly at »/r, = 0.65.
Furthermore, it should be emphasized that as it is expected, the fluctuation velocities
all drop to zero at the wall. At the centerline, however, the rms fluctuations diminish
except for the axial fluctuation values. It seems that highest fluctuation intensity occurs
for the axial fluctuation component, which decreases subsequently almost 2 orders of
magnitude for the helical fluctuation component and finally 1 order of magnitude more
reduction is observed for the radial component. These results indicates a strong
anisotropy in the turbulent field. Hence, it is evident that the radial and helical
fluctuations does not have any significant contribution to the turbulent energy. These
findings confirm the outcomes of the previous studies on turbulent rotating pipe flows
(Imao et al., 1996; Wu and Moin, 2008). The radial RMS distributions of the velocity
components show that the axial fluctuations are dominant. Whereas, the azimuthal
fluctuation is approximately two orders of magnitudes less than u_,,,, and the u,.,,,,; does

not have any significant contribution to the fluctuation energy of the flow.
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4. LARGE EDDY SIMULATION OF AN INCOMPRESSIBLE,
AXISYMMETRIC, TURBULENT SWIRLING JET

In this chapter three commonly used numerical methods for turbulence modeling in
CFD is briefly discussed. These different approaches, DNS, RANS and LES are
compared so to justify the use of LES.

4.1 Turbulence Simulation: DNS

As being the most accurate approach in simulating turbulent flow DNS resolves all
length and time scales of the flow domain by solving Navier-Stokes equations and no
modeling is involved (Jimenez, 2003). However, highly accurate discretization
methods are required for DNS to accurately capture the evolution of turbulence over a
wide range of length and time scales form Kolmogorov microscales up to the integral
scales. Hence, the number of grid points required increases as Re”* (Pope, 2000).
Hence, DNS is only limited to the simulation of the flows at relatively low Reynolds
number and simple geometries (Xie, 2016).

4.2 Turbulence Simulation: RANS

In contrast to DNS approach, the RANS models the whole cascade in a similar manner,
assuming, for example, the isotropy is valid at all scales is important characteristics of
this technic and, thus, it reduces computational cost and memory requirements, which
makes it the most popular approach in industrial CFD applications. On the other hand,
the RANS method is unable to capture the complex turbulent flow characteristics such
as recirculation, coherent structures in turbulent swirling flows and in general does not

provide any information about unsteady features of turbulent flows.

4.3 Turbulence Simulation: LES

One of the most successful model which is a compromise between the first two

methodologies for turbulence modeling is LES which was first introduced by
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Smagorinsky for meteorology applications in 1963 (Smagorinsky, 1963). In LES large
scales are anisotropic and, thus, resolved explicitly while small eddies can be
considered to be much less dependent on the flow geometry and are close to isotropic,
more universal and homogeneous in character than the large eddies and modelled by
a sub-grid scale (SGS) model. Thus, LES reduces the computational cost related to
mesh fineness significantly compared to DNS (Frohlich and Rodi, 2001). It also
remains more universal and produce more accurate results compared to the RANS
since the large eddies contain most of the turbulent energy and responsible for
momentum transfer is captured by the LES while they are modelled in the RANS
approach (Frohlich and Terzi, 2008). Hence, LES has proven to be one of the most
feasible and promising methods to overcome the limitations of the DNS and RANS
which is widely used in recent decades to predict complex turbulent flows as shown in
figure 4.1 (Heinz, 2020).

>

DNS

LES

Hybrid
LES/RANS
Methods

RANS Slmulatlons

computational costs

Figure 4.1 : A schematic differentiation between RANS, LES and DNS modeling.
(Sagaut et al, 2013).
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4.3.1 Filtering in LES

As mentioned in the previous section, LES formulation requires the modelling the
effects of unresolved SGS and resolving the large eddies in a flow field. In order to
filter out the smaller eddies, first, a separation of the spectra of flow variables in respect
of the wave number is required. A flow variable 6 is decomposed into two parts as

follows,
0(x) =0(x) + 0(x) (4.1)

where 6 denotes the contribution due to the resolved scales with lower wave numbers

and 0'denotes the contribution due to the subgrid scales with higher wave numbers.

Then, a filtered flow variable in a certain fluid domain D can be defined by,
0 = [ 069G ) 42)
D

so that the equation 4.2 represents the convolution of the flow variable 8 with the

filtering kernel function G.

It is worth noting that the filtering operator differs from Reynolds operators by two
crucial distinctions (Sagaut, 2002). The first distinction is that a time averaging of a

filtered flow variable is not equal to the time-average of the variable itself.

§(x) = fé(ij(x,xj dx'+ 0(x) 4.3)

D

By rewriting the equation (4.1), the subgrid part of the flow variable can be defined as
0'(x) =6(x) —6(x) (4.4)
By time-averaging the equation 4.4, it yields
0'(x) = 0(x) - 6(x) (4.5)

Since 6(x) and §(x) in equation 4.5 are not equal, as obtained in 4.3, time average of

the subgrid part does not yield zero.

'(x) £0 (4.6)
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Although there are various types of filter functions G, the most common are called the
box (or top-hat) filter, the Gaussian filter and the sharp cutoff filter.

4.3.2 Formulation of equations

By employing a top-hat filter to the unsteady incompressible Navier-Stokes equations,
the following continuity and momentum equations is obtained.
oil;
5xl~ N
om o) op 1 oW

ot Ox; ox; Redx;ox;

(4.7)

(4.8)

Due to the non-linear term (2%, ) on the LHS of equation 4.8, a decomposition in terms

of the resolved and sub-grid parts of «; is required.

4.3.3 Leonard decomposition

u=u;+u; (4.9)
iy = (i1 + ) (@ + u)) (4.10)
ull; = ﬁ?j + L’T,uj+ ulﬁj + uluj (4.11)

Subtracting a #;i; term from both sides of equation 4.11, yields

—~

= U, — uu; + uju; + uu; + uu; = 1 (4.12)

Uiy — ui;

~

Then, by substituting 4.12 into the equation 4.8,

o, | o) _ op ony 1 &

ot ox; Cox;

— (4.13)
j ox;  Ox;  Redx;dy;

is obtained, where p and z; denote the filtered pressure and SGS stress tensor,

respectively.

The SGS stress tensor z; can be further separated into three stress tensors by using

Leonard decomposition.
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C; = uiu;+ uf'uj (4.16)
= (4.17)

The term Ly denotes Leonard stress tensor, which describe the interactions between all
resolved scales of the flow. Cy is called cross-stress tensor and it is related to
interactions between large and small scales. Finally, R;; denotes the Reynolds stress

tensor and it determines the effect of small scales in the resolved flow field (Wagner
et al, 2006).

4.3.4 SGS models

Since the SGS stress tensor obtained by filtering process is unknown, it requires
modeling. Most of the developed models were established upon Boussinesq’s
hypothesis, which defines a relation between SGS stress tensor and subgrid turbulent

viscosity as follows,

51"Tkk ~
7 — 13 = —2uS;; (4.18)
g Lfom o (4.19)
Y 2 axj axl-

where S~U is the resolved scale strain rate tensor, «, is the subgrid turbulent viscosity,
7y IS the isotropic part of SGS and J;; denotes the Kronecker delta (Mason, Galperin
and Orszag, 1994).

The first basic SGS model was conjectured by Smagorinsky, in which a mixing length
of L, proportional to filter width A is considered.

L,=C,A (4.20)

In equation 4.20, C, denotes the Smogarinsky constant, which is not a universal
constant and depends on the flow type, notably (Bernard and Wallace, 2002), so that
it is required to adjust the constant for different applications.

Using the equation 4.20, the eddy viscosity, x,, can be defined in terms of the mixing

length.
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u, = L33 (4.21)
15| = [28;8; (4.22)

Germano et al (1991) had suggested an advanced SGS model to dynamically determine
the Smogarinsky constant, which varies in time and space during the simulation, with
a method of double filtering. Since the value of C; does not remain constant in the
whole domain in the dynamic model, the energy transfer from small to large scales can

be captured as well.

In this study, LES with the dynamic Smogarinsky SGS model was used for the

simulation of the flow field of an incompressible, axisymmetric, turbulent swirling jet.

4.4 Mean Flow and Turbulent Parameters
As mentioned before, the swirling jet from the experimental study case of Orlii and
Alfredsson (2008) is used as the validation of the LES simulations in this thesis.

As a reminder, the experimental flow field variables (Orlii and Alfredsson, 2008) that

are used in this study are given in Table 4.1.

The experimental case flow field variables are given in Table 4.1.

Table 4.1 : Experimental jet flow parameters.

Parameter Symbol Value Unit
Bulk velocity at inflow boundary Upuik 6.00 m/s
Swirl Number S 0.5 -
Density of air p) 1.177 kg/m?®
Dynamic viscosity of air U 1.846 10° kg/m s
Pipe nozzle diameter Dy 0.06 m
Operating pressure P, 101,325 Pa

According to Kolmogorov’s hypothesis, the relations between macro and micro scales

in turbulent flows can be defined on the basis of Reynolds number of large scales, Re;,

as follows,
71/10 = Rel'3/4 (424)
where
Re; = loupp/u (4.25)
uy /iy = Rey/* (4.26)
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1,/70 = Re[l/2 (4.27)

where /y, uy and 7, are the length, velocity and time scales of large eddies, while 7, u,,
and 7, denote the same parameters for small eddies, known as Kolmogorov scales,
respectively (Pope, 2000).

To be able to find the magnitudes of the parameters of large scales, two additional

relations are required. The first relation implies that the strain rates of large and mean

flow scales are proportional and can be given as follows,

Umean - @ (4- 28)
L lo

where U,,.., and L denote the length and velocity scales of the mean flow, which are
already taken as U, and D, in this study, respectively. The second relation implies that
the Reynolds number of the mean flow is one order of magnitude greater than the

Reynolds number of macro scales, which can be given as follows,
Re = 10- Re; (4.29)
Additionally, it is known that
70 = lo/ug (4.30)
By using the equations 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 and 4.29, the magnitudes of

the parameters of large and small scales are calculated and given in Table 4.2.

Table 4.2 : Turbulent scales.

Parameter Large Scales Kolmogorov scales
Length [m] 0.0189 5.53341-10%
Velocity [m/s] 1.897 0.271
Time [s] 0,01 0.000204
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5. COMPUTATIONAL PROCEDURES OF SWIRLING JETS

5.1 Computational Domain

The computational domain of the jet in this study was designed according to the
experimental setup of Orlii and Alfredsson (2008). The geometry of the domain was a
truncated cone as shown in Figure 5.1. A pipe of diameter D, = 0.06 m and wall
thickness of 5 mm was aligned concentrically within the cone and extended from the
bottom of the cone to the jet exit plane, where the origin of the coordinate system was
set. The computational domain started from the bottom plane of the cone, which was
located at a distance of D, upstream of the jet exit. The length of the domain in the
axial direction was extended up to a distance of 40D,, measured from the origin to the
top plane of the cone. The diameter of cone at the bottom and top were 10D, and 40D,,,

respectively.

Outflow

Free swirling jet

Wall

Inflow

Rotating pipe

Figure 5.1 : Schematic and geometry of computational jet domain with boundaries
shown.
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The structured hexahedral mesh was built by employing a commercial software
(ANSYS ICEM CFD 18.2). The mesh consists of 5,533,041 hexa elements defined in
48 blocks, which satisfies the criterion A/n= 8.966 < 12 (Pope, 2000) where A is the
smallest cell size of the mesh and 7 is the Kolmogorov length scale given in Table 4.2.
Multiple interpolated o-grid blocks were created to improve the mesh quality. The
outer o-grid blocks were designed by assuming that the total angle of spread of the free
jet is 24° (Cushman-Roisin, 2014). The mesh, with a minimum cell size of Az,;, =
0.0005 m in the near field of jet, was generated according to turbulent length scales
given in Table 4.2, which allows an entrainment surface to be able to represent the

small eddies. This was expected to increase the accuracy of the simulation.

Different sections of the computational grid are shown in Figures 5.2.
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Figure 5.2 : Computational mesh a) slice of computational grid at x = 0. b) Close up section of computational grid near jet exitat x = 0
¢) Computational grid section in the y—z plane,close up of inlet plane grid. d) O-grid type used in azimuthal direction e) strong zoom of d).
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5.2 Flow Solver and Numerical Methods

As a computational platform to solve the governing equations, a three-dimensional,
incompressible, transient solver with double precision (ANSYS FLUENT V18.0) was
used with the finite-volume discretization method. Since the finite-volume
discretization of the code uses an implicit filtering through the integration over
volumes of computational cells (which is similar to convolution with a top hat filter)
an explicit filtering of instantaneous flow field equations was not necessary (Zhiyin,
2014).

5.2.1 Spatial discretization

In the solver, pressure and velocity values were stored in cell centers. However, the
values of the pressure at the faces between cells were required to solve the discretized
momentum equations. Usually, the momentum equation coefficients are used to obtain
the pressure values at faces. This scheme is feasible for flow simulations, in which the
pressure profile does not have a high gradient at cell faces (Chung, 2010; ANSYS,
Inc., 2012). For the convection discretization of transport equations, bounded central
differencing scheme was utilized which is considered as the optimal setting for LES
due to its low numerical diffusion (Guseva et al., 2018; Adedoyin, Walters, &
Bhushan, 2015). The bounded scheme is an improved version of central differencing,
in which the central differencing, the first-order and second-order upwind schemes are
all blended. This approach eliminates the unnatural numerical oscillations caused by
the standard second order central differencing scheme and thus, it yields a more
accurate solution and increases the numerical stability (Leonard, 1991). The Pressure-
Implicit with Splitting of Operators (PISO) was employed as the pressure-velocity
coupling method, which is specially recommended for transient flows and can
maintain high stability even with large time steps (Chung, 2010; Versteeg &
Malalasekera, 2007).

5.2.2 Temporal discretization

For temporal discretization, bounded second order implicit formulation was selected
as it provides high stability due to bounded variables. It is unconditionally stable for

any time step size, unlike explicit methods, in which the time step size is dependent
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on mesh size according to the Courant-Friedrich-Lewy (CFL) condition (Courant et
al, 1928). The CFL number is a function of the local velocity U; and cell size Az, and

can be given for one-dimensional case as

At
CFL = Up (4.31)
VA

where At denotes the time step size. Even though implicit temporal discretization
method is not limited by CFL number as far as numerical stability is concerned, it
should be remarked that sufficiently small temporal and spatial resolution are still
required for high accuracy in LES simulations. In this study, the time step size was
chosen as Az = 0.001 s, about 5 times greater than the Kolmogorov time scale given
in Table 4.2. It captures the smallest scales of the inertial sub-range so that a maximum

CFL number below 11 was maintained for the implicit temporal discretization.

5.2.3 Wall boundary condition

For the pipe walls shown in Figure 5.2b, the no-slip boundary condition was assigned,

in which the magnitudes of all velocity components at the wall are set to zero.

5.2.4 Inflow boundary conditions

The inlet boundary was located at the pipe inlet, where a prescribed velocity was
employed by specifying the time-varying velocity components in the axial and
azimuthal directions. Two simulations with different turbulent properties were
computed: The first simulation was run without any turbulent velocity fluctuations at
the inlet boundary. In the second simulation, the Fourier modes obtained by the linear
stability analysis were superimposed over all frequency and wavenumber spaces for
the radial, azimuthal and axial velocity components as follows,

Z Z Z Z AP ol thyghez—wi} (4:32)
w Ok 7

r kqf z

However, the orthonormality condition imposed in equation 2.40 leads to the rms

fluctuations (eigenfunctions in summation 4.31) to an arbitrary constant, which was
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previously set to 1. In order to have the desired turbulent intensity (TI) at the inflow

boundary, the unscaled rms fluctuations needed to be scaled by a factor ¢ defined as,

TI- U,
c=—-2=2% (4.33)

Uz rms

where Uy, = 6.0 m/s. The TI was chosen according to the experimental data (Orli
and Alfredsson, 2008) as 14.84%. Hence, one can make the unscaled rms fluctuations
producing the same TI as the experimental value, if ¢ is set to 0.011, which is based
on the maximum value u, .| max = 86.28 (see Figure 3.7b). The resulting scaled
fluctuating velocity components were then superimposed on the mean velocity profiles

to generate the time-dependent axial, radial and azimuthal velocity components.

The turbulent intensity characteristics at inflow boundary and the corresponding

values of "¢" are given in Table 5.1 for all simulations.

Table 5.1 : Turbulent intensity characteristics at inflow boundary and the calculated
values of c for all simulations.

Simulation TI C
SIM1 No fluctuation -
SIM2 14.84% 0.010319

By using a UDF, the resulting scaled signal for the radial velocity component was
directly applied at inflow boundary, while the signals for the axial and azimuthal
velocity components were first superimposed over the mean profiles to generate the
time-dependent turbulent axial and tangential velocity profiles respectively.

5.2.5 Outflow boundary conditions

At three outflow boundaries shown in Figure 5.1, the pressure outlet conditions were
employed, which assigned a constant static pressure (zero gauge pressure) at the
boundary, while all other quantities were extrapolated from the interior. In order to
avoid the reflection of the outgoing waves from the outlet surfaces back into the
interior of the domain, these boundaries also need to be non-reflecting. The
formulation of the non-reflecting boundary condition, where the waves are

numerically absorbed and do not corrupt the solution, is given as,
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00 00

O v 4.34
o YU, =0 (4:34)

where @ represents any dependent variable of the flow field, » denotes the coordinate
in the direction normal to the outflow plane and U.. is convection velocity, which is

required to maintain the overall mass flux conservation (Ferziger and Peric, 2002).
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6. RESULTS OF LARGE EDDY SIMULATIONS OF SWIRLING JETS

In this chapter, the time-averaged results of the large eddy simulations are given and
compared to the experimental results of Orli and Alfredsson (2008). The mesh
described in 5.1 was used for SIM1 and SIM2. At the beginning of the simulations,
the mean axial and azimuthal velocity profile applied at the inflow boundary was
slightly modified according to the boundary layer development along the pipe, so that
the exact experimental jet exit profiles at z/D, = 0.0 were obtained. Both simulations
were run initially for 4000 time steps until the flow reached a statistically temporally
stationary state. After this time, the numerical data were sampled for over 5000 time

steps for proper and robust time statistics.

6.1 Axial Velocity Results

Figure 6.1 shows that the computed mean profiles for both cases present an excellent
agreement with the experimental profile. As Orlii and Alfredsson stated, this axial
mean velocity profile emenating from the rotating pipe flow is matching well with
power-law profile of U/U,,; = (1 —r/R)"/7 where R = 0.5+ D, (Schlichting, 1979;
Orlii and Alfredsson, 2008).
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Figure 6.1 : Radial profiles of normalized mean axial velocity at z/D, = 0.0
(m): Experimental data, (—): SIM1, (---): SIM2, (—): Power-law profile.
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Figure 6.2 : Radial profiles of axial turbulent intensity at z/D, = 0.0

(m): Experimental data, (—): SIM1, (---): SIM2.

The radial distribution of axial component of the turbulent intensity at z/D, = 0.0 is
shown in Figure 6.2. Compared to the experimental data, the computations of turbulent
fluctuations in both simulations capture the location and the magnitude of the peak
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value but, otherwise, retain much lower values; although the SIM2 shows some
improvements it is still far from being satisfactory. The discrepancies between the
simulations and the experimental data can be caused by two reasons; first, the lack of
accuracy of measurements near the pipe exit, where the LDV probe volume would be
very elongated in the r-direction, causing severe smearing of the velocity gradient
(Jones, 2005). The second, the turbulent diffusional effects might be underestimated
in the computations, which manifest itself as relatively longer length of the potential

core and more gradual growth of the shear layer (Bogey et al., 2012).
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Figure 6.3 : Radial profiles for normalized mean axial velocity at different
streamwise locations. (m): Experimental data, (—): SIM1, (---): SIM2, (Each curve is
moved up by 2 with respect to previous one).
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Figure 6.4 : Visualization of the time-averaged axial velocity U, . The radial
profiles of normalized mean axial velocity shown at selected axial positions.

Figure 6.3 compares the normalized mean axial velocity profiles with the
measurements at the five different axial stations. In the near-field region, a good
agreement with the experiment is observed. Both simulations show an excellent
agreement for z/D, < 4. Farther away from the jet exit, very small discrepancies
become apparent particularly in the inner shear layer, where the axial velocities near
the centerline is slightly overpredicted. In the outer shear layer, nearly a perfect match
is observed between the experimentally measured and computationally predicted

results.

The radial profiles of the mean axial velocity were replotted (z/D, = 1, 3 and 6) on
the contours of the mean axial in Figure 6.4, which puts in evidence that the potential
core of the jet was overextended beyond z/D, = 5 as described by Vouros and Anidis
(2010) and Facciolo et al. (2005).
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Uz rms
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Figure 6.5 : Radial profiles of axial turbulent intensity at different streamwise
locations: Near-field region. (m): Experimental data, (—): SIM1, (---): SIM2,
(Each curve is moved up by 0.2 with respect to previous one).

Figure 6.5 presents the radial profiles of the axial component of the turbulent
fluctuations at five axial locations. In near-field of the jet, where there exist a very
steep radial gradient a the jet boundary, the axial component of the rms fluctuation,
U yms/ Upuis PEAKS in the shear region. The rms fluctuations close to the centerline (in
the potential core) remain low compared to the shear region, which are referred to the
dominance of small-scale fluctuations (Orlii and Alfredson, 2008). This might be the
reason for the large departures from the experimental data in the potential core
particularly immediately next to the jet exit. It should also be pointed out that the length
of the pipe in the computational setup (from which the jet issued) was D,,, and this was
too short to make the flow in the pipe fully developed compared to 100D, long pipe
in the experimental setup. Apparently, this became particularly more severe for the
flow turbulence (manifested by the second order moments) to reach the full-developed
state. Nonetheless, the results of the SIM2 calculations rapidly recover up to z/D, = 4

and attain a very good fit with the experimental data. The agreement is already
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satisfactory in the outer shear layer, where the large-scale structures form and grow
with the entertainment (Schefer, 1994).

6.2 Azimuthal Velocity Results

The radial distribution of the mean azimuthal velocity Uy, which is normalized with

the azimuthal velocity at the pipe wall, U,,; = 3.0 m/s at 8 different measurement
station along the axial direction are plotted in figure 6.6. The present results show
excellent agreement at the pipe exit, which validate the inflow boundary condition
used in the prediction of the flow in simulations. As presented in the figure 6.6 the
mean azimuthal velocity follows the parabola like profile (»/R)? and, except for the
peaks, this profile match with the measurement and simulations until three diameter
downstream (Foiccolo, 2007; Orlii and Alfredson, 2008). As apparent from the Fig.6.6
and 6.7, the decay of the azimuthal velocity peaks in the simulations were slower
compared to the experimental data. It implies that the swirling jets calculated is not
expanding as fast as in the experiments. This proves the lack of turbulent diffusion in
the LES model. It is observed that in contrast to the simulations, the peak values of the
mean azimuthal velocity in the experimental data decreased to almost half of the value
after just one diameter downstream. This is also attributed to the entrainment of air
surrounding the jet, which I not well captured in the simulations. Consequently, the
simulations overpredicted the tangential velocity. Nonetheless, both simulations were
able to follow the trend of the experimental data until z/D, = 6, where a very
interesting phenomenon is observed. In the experimental data, the azimuthal mean
velocity profile exhibits a counter rotating core (Fig. 6.6¢). This implies that the part
of the jet around the centerline starts to rotate in the direction opposite to the one in
the rotating pipe upstream (Foiccolo, 2007; Orlii and Alfredson, 2008). This
phenomenon is, however, observed slightly downstream at around z/D, = 8 in the
simulations with the SIM2 having slightly better prediction. It is mostly due to fact
that, the eddy-viscosity model in the LES formulation becomes inadequate in the
region, where the entrainment turn into a periodic phenomenon and the jet expansion
is mostly governed by the diffusivity (Garcia-Villalba, 2006). It is also important to
note that the azimuthal mean velocity at this location is relatively small, roughly about
2% of the U, in the pipe.
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Figure 6.6 : Radial profiles of mean azimuthal velocity at first four streamwise location. (m): Experimental data, (—): SIM1, (---): SIM2
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In figure 6.7 radial profile of azimuthal turbulent intensities of two simulations for 8
different axial locations are presented. Unfortunately, there is no experimental data
available to compare the results concerning the azimuthal rms values of the fully
developed rotating pipe flow. It is observed that for all axial stations, the normalized
azimuthal fluctuations were substantially lower at the mixing region around the
centreline (Be'er and Chigier 1972) compared to the peak in the jet shear layer at
around »/R = 1. The difference between the centerline values and the values at the
peak is reduced because the shear layer gradually penetrate into the jet core until
z/Dy = 8, where the jet becomes fully developed. It should also be noted that the SIM2
exhibits a wider distribution near the jet exit, and the difference between the SIM1 and

SIM2 is reduced away from the jet exit.
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locations. (=): SIM1, (---): SIM2.
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6.3 Spectrum Analysis

In order to analyze the complex features of the swirling jet near the jet exit region, the
power spectrum of the computed velocity fluctuations were presented at pointz/D, =
1 and »/R = 0.6, which is located in the inner shear layer near the jet exit where there
exists coherent structures (Garcia-Villalba, 2008). The case of SIM1, Fig. 6.9(a-c),
where no perturbations superimposed on the mean flow shows a fairly low level of
fluctuations but a distinct peak around f = 2 Hz for axial velocity component and f =
3and 4 Hz for the azimuthal and radial disturbation, respectively. The higher

harmonics are related to random turbulence eddies present in the flow field.
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Figure 6.8 : Power spectrum of axial velocity at z/D, = 1, /R = 0.6. a) - ¢) SIM1.
d) - f) SIM2.

For the SIM2 case, Fig. 6.9(d-f), where the perturbations are introduced, a dominant
frequency of f =3 Hz can clearly be identified in the axial velocity, which is larger
than that for the SIM1. These peaks at the low frequency range is attributed mainly to
the well-known swirling flow structure, called the precessing vortex core (PVC)
(Syred et al., 1994; Wessman, 1995). The PVC motions are characterized by large

structures, which rotate around the axis of symmetry at a very low frequency (Wang
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et al., 2004). In the literature, the formation of PVVC motion is related to shear layer
instability of Kelvin-Helmholtz type (Schluter, 2000; Oberleithner et al., 2011). It is
also evident from the azimuthal and radial rms fluctuations that higher amplitudes are
observed in the SIM2 compared to the SIM1, which is a result of the addition of
turbulent perturbations. The radial fluctuations have the lowest values of amplitudes
between other velocity components as it is expected from the results of the previous
section where the radial velocity has the lowest value among other velocity

components (Wang et al., 2004).
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7. CONCLUSION

In this study, hydrodynamic stability approach was used to generate proper and
accurate inflow boundary conditions for large eddy simulation of an axisymmetric
turbulent swirling jet. For this purpose, the hydrodynamic stability analysis was
performed for a circular pipe flow. By solving the linearized equations of motion for
fluctuation components with the parallel shooting method, Fourier modes for axial,
azimuthal and radial velocity components and pressure were obtained. By
superimposing the sets of these modes over frequency and wavenumber spaces, time-
and space-dependent velocity signals were produced to use as inflow boundary
condition in LES of a turbulent jet. The Reynolds and swirl number of the flow are
kept fixed at 24000 and 0.5, respectively. The jet geometry and the axial mean velocity
profile were taken from experimental study of Orlii and Alfredsson (2008). Two
simulations were run with different turbulence characteristics at inflow boundary and

results were compared to the measurements of Orlii and Alfredsson (2008).

The stability analyses are performed for axisymmetric and non-axisymmetric
disturbances in cylindrical coordinates. The numerical results showed that the fully
developed pipe flow responses was stable to both axisymmetric and helical
perturbations, which is consistent with previous stability analyses in both temporal and
spatial frameworks. The effect of mode shapes for different frequencies as well as
different radial wavenumbers, is illustrated. It appears that the amplitude of the mode
shapes increases substantially with frequency. The amplitude modulations’ peak value
resides between the centerline and the wall, where the outer shear layer is located.
Radial RMS distributions of the velocity components show that the axial fluctuations
are dominant. Whereas, the azimuthal fluctuation is approximately two orders of
magnitudes less than u_,.,,, and the u,.,,,, does not have any significant contribution to

the fluctuation energy of the flow.

All simulations provided very similar results at all axial locations regarding the radial
distribution of mean axial velocity, and this revealed that the radial velocity signal
applied at the inflow boundary did not have a remarkable effect on the jet spread. This
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suggested that either the radial velocity fluctuations were suppressed in the very start
of the potential core, or their magnitudes were not high enough to make a contribution.
Additionally, the potential core length and centerline decay rate were well captured in
all two simulations. However, considering the results in terms of axial turbulent
intensity, it was observed that the simulations with 14.84% turbulent intensity at the
inflow boundary provided better results overall compared to the other case. Same

results also revealed that.

Further investigation is done by analyzing the power spectral density of velocity
fluctuations. The spectra obtained from LES data revealed the existence of the
coherent structures (PVC) in the near flow field of the swirling jet, particularly for the
SIM2. Thereby, it can be concluded that flow with perturbed inflow captured the large
scale structures in the simulations much better than the non-perturbed one. This study
can be extended for non-linear hydrodynamic analysis, which can be performed to
calculate more realistic modes without neglecting terms like Reynolds stresses.

This study can further be extended for non-linear hydrodynamic analysis, which can
be performed for the calculation of more realistic modes without neglecting terms like

Reynolds stresses.
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